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Abstract

This study investigates the energy efficiency and environmental performance of
Mexico’s manufacturing sector across different regions. To achieve this objective,
a non-radial directional distance function model that encompasses both desirable
and undesirable outputs is employed. The dataset includes information from all
Mexican states on production, capital, labor, and energy consumption. The mea-
sure of undesirable output involves quantifying greenhouse gas emissions from
the manufacturing sector. The findings underscore the importance of including un-
desirable output in the analysis, as this leads to more precise conclusions about
the economic efficiency of the manufacturing regions. The study’s results indicate
that, over the analysis period, the production frontier experienced only modest
shifts. However, at the regional level, northern states have demonstrated signifi-
cant strides in improving their energy and environmental efficiency, whereas their
southern counterparts are lagging behind. The study highlights the potential for
nationwide energy and emission savings if similar measures to those implemented
in the most efficient states are adopted.
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1 Introduction

Mexico ranks twelfth worldwide in Greenhouse Gas (GHG) emissions, contributing

around 1.5% of the global GHG emissions (The World Bank, 2021). The country’s

environmental goals, as outlined in the Paris Agreement in 2015, require a 22% reduc-

tion in GHG emissions by 2030 compared to a business-as-usual scenario (Iniciativa

climática de México, 2021). This target corresponds to a reduction of approximately

211 million tons of CO2 (Iniciativa climática de México, 2021). It is estimated that the

manufacturing industry is responsible for over 18% of the total emissions, primarily due

to energy consumption during production (INECC, 2018).

The manufacturing industry sector is tasked with achieving a 25% reduction goal,

despite accounting for 32% of the nation’s total energy consumption (Secretaria de En-

ergı́a, 2020; Iniciativa climática de México, 2021). This necessitates significant access

to renewable energies, distributed generation, and the implementation of measures to

enhance energy conservation and efficiency. The objective of this article is to assess

the regional progression of energy efficiency within the manufacturing sector, coupled

with the efficiency of emissions reductions. Consequently, companies could curtail their

energy costs without impacting their output, leading to a net reduction in pollution. As

highlighted by Wu et al. (2012), the conventional measurement of technical efficiency

primarily emphasizes producing desired goods without adequately accounting for the

environmental repercussions of these production processes.

The existing literature primarily investigates the technical efficiency of total produc-

tion through the incorporation of undesirable output, often involving cross-country com-

parisons (e.g., Chiu et al., 2016; Zhou et al., 2012). However, a noticeable gap exists

at the country level within Latin America, including Mexico. While prior studies have

predominantly centered around China, comparing regional technical efficiency and en-

vironmental performance (e.g., Yao et al., 2015; Wang et al., 2013; Yan et al., 2020; Wu

et al., 2012), the attention in this regard for Latin American nations, particularly Mexico,

has been limited.

While some research has explored the technical efficiency of Mexico’s manufac-

turing sector (e.g., Chávez and López Ornelas, 2014; Borrayo López et al., 2019;

Vazquez-Rojas and Trejo-Nieto, 2014), these studies have yet to consider undesir-

able outputs within their regional analyses. Notably, a specific focus on regional as-

sessments of the manufacturing sector’s technical efficiency, particularly in relation to

energy and environmental efficiency involving undesirable products, remains absent.
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As depicted by INEGI (2020b), the regional dimension in Mexico assumes paramount

importance, given the country’s distinct characterization of highly industrialized north-

ern and central regions, contrasting with the southern regions’ higher reliance on oil

and tourism.

The primary objective of this paper is to assess the regional variations in technical

efficiency within the manufacturing sector, taking into account the impact of green-

house gas emissions (GHG) emissions. By examining the integration of greenhouse

gas emissions into the production framework, we aim to determine whether regions

with previously identified high efficiency in manufacturing can maintain their advan-

tageous positions as highlighted in earlier studies (e.g., Chávez and López Ornelas,

2014; Borrayo López et al., 2019; Vazquez-Rojas and Trejo-Nieto, 2014). To achieve

this goal, we employ Data Envelopment Analysis (DEA), a non-parametric method

used to evaluate the relative efficiencies and inefficiencies of a group of Decision-

Making Units (DMUs). This technique establishes a production frontier that represents

the best practices. DMUs that align with this frontier are considered efficient, while

those positioned below the frontier are classified as inefficient. By comparing the effi-

ciency values of DMUs below the best practices frontier with those on the frontier, we

can accurately evaluate their performance. Moreover, as Yao et al. (2015) point out,

by encompassing both desirable and undesirable outputs, it yields comprehensive ef-

ficiency metrics for energy and environmental performance. Thus, our secondary goal

revolves around assessing the energy and environmental efficiencies within Mexico’s

regional manufacturing sector. We endeavor to gauge the extent of improvements over

time in these aspects, alongside exploring the role these efficiencies play in reducing

energy expenses and aiding the realization of national environmental targets.

Our findings indicate that there is significant potential for energy savings within the

national manufacturing sector, with a possible reduction of up to 20.3% of the sector’s

total energy consumption. Additionally, from an environmental perspective, the sector

could achieve a reduction in GHG emissions of up to 24.3% by implementing measures

aimed at enhancing environmental performance.

The remainder of this paper is organized as follows. Section 2 provides some con-

text of the regional use of the energy and emission intensity of the manufacturing sec-

tor. Section 3 provides a brief review of previous studies, including some applications

for Mexico. In section 4 the non-radial directional distance function model is explained.

Section 5 describes the variables used for the analysis and presents some descriptive

statistics for selected variables. Section 6 reports the results of the directional, non-
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radial distance function model and the efficiency indices. Finally, section 7 provides

some discussion of the results and concluding remarks.

2 Context

The manufacturing sector across Mexico’s regions showcases considerable hetero-

geneity, with energy consumption exhibiting a strong correlation with activity levels.

The country’s thirty-two states are grouped into four major regions1: the Northern re-

gion, encompassing those bordering the U.S.; the North-Central region, comprising

states below the northern region; the Central region, encompassing central states; and

the Southern.

Of these, the Northern region’s manufacturing industry commands the highest con-

sumption of electricity and natural gas nationwide, representing a substantial 46.3%.

Following closely are the North-Central and Central regions, accounting for 26.3% and

15.0%, respectively. The Southern region registers the lowest consumption at 12.4%

(with information by Secretaria de Energı́a, 2020; INEGI, 2020b).

In terms of greenhouse gas (GHG) emissions, the Northern states emerge as the

foremost contributors, responsible for 29.8% of total emissions within the manufac-

turing sector in 2018. The North-Central, Central, and Southern regions follow suit

with 24.6%, 24.2%, and 21.4% contributions, respectively (with information by INECC,

2018). These disparities highlight the importance of analyzing regional variations,

which is precisely the focus of this research.

The energy consumption within each state is significantly influenced by the manu-

facturing activities that necessitate substantial energy usage. Nevertheless, it’s crucial

to acknowledge that the level of energy use efficiency also plays a pivotal role. An

apt metric for comprehending the present energy utilization status in each state, while

considering its activity level, is energy intensity. This metric measures the amount of

energy used to produce a given level of output, it is calculated specifically as the ratio

of energy consumption to the gross value added by the manufacturing sector.

Figure 1(a) presents the energy intensity values for each state across regions in
1The Northern region includes Baja California (BC), Chihuahua (Chih), Coahuila (Coah), Nuevo León

(NL), Sonora (Son) and Tamaulipas (Tamps); the North-Central region considers Aguascalientes (Ags),
Baja California Sur (BCS), Colima (Col), Durango (Dgo), Jalisco (Jal), Michoacán (Mich), Nayarit (Nay),
San Luis Potosı́ (SLP), Sinaloa (Sin) and Zacatecas (Zac); the Central region includes Mexico City
(CDMX), Estado de México (Mex), Guanajuato (Gto), Hidalgo (Hgo), Morelos (Mor), Puebla (Pue),
Querétaro (Qro) and Tlaxcala (Tlax); and the Southern region includes Campeche (Camp), Chiapas
(Chis), Guerrero (Gro), Oaxaca (Oax), Quintana Roo (QRoo), Tabasco (Tab), Veracruz (Ver) and Yu-
catán (Yuc)
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both 1998 and 2018. Of note, Michoacán (Mich) stands out with notably high energy

intensities for both years, recording values of 2.34 and 1.60 MJ/MXN, respectively. Fol-

lowed by this, Veracruz (Ver) displays elevated energy intensity in 2018 (1.88 MJ/MXN),

significantly surpassing the value observed in 1998 (1.18 MJ/MXN). Similarly, Tabasco

(Tab) only in 2018 shows the highest energy intensity with 3.1 MJ/MXN. Additionally,

Nuevo León (NL), Hidalgo (Hgo), and Tlaxcala (Tlax) showcase elevated energy inten-

sities, which have witnessed an increase from 1998 to 2018.

(a) Energy

(b) Environmental

Figure 1: Energy and Emissions Intensity

Note: Energy intensity refers to the amount of energy used to produce a given level of output, while
emissions intensity refers to the CO2 emissions generated to produce a given level of output.

Beyond energy consumption, the emission intensity within each state is significantly

influenced by the production process. This factor gauges the added value of the output
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concerning each additional unit of GHG emissions. In this context, it is computed by

relating these emissions to the manufacturing value added.

As illustrated in Figure 1(b), Michoacán (Mich), Campeche (Camp) and Guerrero

(Gro) stand out for their high emission intensities across both 1998 and 2018, boasting

values exceeding 0.2 Kg CO2e/MXN, while Zacatecas (Zac), Veracruz (Ver) and Oax-

aca (Oax) have high emission intensities in 1998. In particular, even though Hidalgo

(Hgo), Nayarit (Nay) and Chiapas (Chis) had intensities around or below the average

in 1998, unlike the remaining, have experienced an uptick in their emission intensity

between 1998 and 2018. These states hold a substantial proportion of manufacturing

value added within subsectors characterized by emission and energy-intensive activ-

ities, such as the production of oil and coal products, basic metal industries, and the

chemical sector.

The savings computed within this study underscore the potential of each state to

mitigate these intensities. These efficiencies can be achieved through measures en-

hancing energy and environmental efficiency, without detrimentally impacting their level

of economic activity.

3 Literature Review

Considering undesirable outputs, such as CO2 emissions from fossil fuel use, is crucial

for several reasons. First, neglecting these outputs leads to biased efficiency scores,

as analyses that ignore them underestimate the true environmental impact (Wu et al.,

2012; Yao et al., 2015). Several studies support this notion, demonstrating how exclud-

ing undesirable outputs misrepresents performance (e.g., Yao et al., 2015; Wang et al.,

2013; Yan et al., 2020; Wu et al., 2012). For instance, models that do not account for

these emissions might incorrectly label practices or technologies as efficient despite

their negative environmental consequences. Therefore, incorporating undesirable out-

puts provides a more comprehensive and realistic assessment of energy efficiency,

aligning it with broader environmental and sustainability goals.

Cross-country studies are abundant due to the availability of data at the national

level. Analyzing undesirable outputs across countries reveals significant performance

differences. Zhou et al. (2012) employed a dynamic efficiency analysis to evaluate en-

ergy use, carbon emissions, and integrated energy-carbon performance in OECD and

non-OECD countries. They found countries like Switzerland, Lithuania, and Ukraine on

the efficiency frontier, indicating their ability to manage both energy use and CO2 emis-
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sions effectively. Conversely, nations with lower efficiency scores often relied heavily on

coal and had lower generation efficiency, leading to higher undesirable outputs. Over-

all, the study suggests a gap between OECD and non-OECD countries, with the former

generally exhibiting better energy and carbon performance. Additionally, their analysis

indicates a link between generation efficiency and overall energy performance, and be-

tween lower carbon intensity and better CO2 emission performance. Chiu et al. (2016)

explored productivity efficiency in G20 countries, highlighting variations in performance

while considering undesirable outputs. While some countries like Turkey and Mexico

showed significant improvements, others like Argentina and Germany experienced de-

clines. Interestingly, the United States consistently ranked highest in productivity effi-

ciency, while China and Saudi Arabia remained lower. This comparison underscores

the importance of including undesirable outputs in efficiency analyses. It highlights that

efficiency gains in some countries might come at the expense of increased undesirable

outputs, whereas others have managed to improve both.

Prior research has focused on both specific sectors and entire economies. Studies

like those by Zhou et al. (2012) and Wu et al. (2012) examine the electricity and indus-

trial sectors, respectively, incorporating undesirable outputs into their analyses. Con-

versely, Chiu et al. (2016) consider the entire economy of G20 countries using GDP as

an output variable. Notably, a significant portion of research has centered on China,

comparing regional technical efficiency and environmental performance while consid-

ering undesirable outputs (e.g., Yao et al., 2015; Wang et al., 2013; Yan et al., 2020; Wu

et al., 2012). For instance, Yao et al. (2015) conducted a detailed regional analysis for

GDP and carbon emissions using data from China’s provinces. Their findings suggest

substantial potential for carbon emission reductions by improving efficiency in lagging

provinces.

While research exists for various countries and lower levels like provinces or regions

of a country, a gap remains at the national and regional levels within Latin America, in-

cluding Mexico. Studies have explored the technical efficiency of Mexico’s manufactur-

ing sector but haven’t yet considered undesirable outputs (e.g., Chávez and López Or-

nelas, 2014; Borrayo López et al., 2019; Vazquez-Rojas and Trejo-Nieto, 2014). For

instance, Chávez and López Ornelas (2014) examined the contributions of factors like

technical efficiency and technological change to labor productivity variations across

Mexican states. However, their analysis did not include undesirable outputs. They

used non-parametric techniques such as Kumar and Russell (2002)’s decomposition

and Farrell (1957)’s index to measure the technical efficiency of the manufacturing

6



industry in each state. Their findings indicate that labor productivity growth was pri-

marily fueled by enhancements in technical efficiency in the northern and southern

regions, whereas technological advancements were the main contributors to produc-

tivity increases in the central regions. Different methods have been also used, studies

by Borrayo López et al. (2019) and Alvarez et al. (2017) employed stochastic frontier

methods to evaluate efficiency in Mexico but also neglected undesirable outputs.

By integrating greenhouse gas emissions into the production framework, this re-

search aims to investigate whether regions with previously identified high efficiency in

the manufacturing sector (e.g., Chávez and López Ornelas, 2014; Borrayo López et al.,

2019) can maintain their position when environmental considerations, specifically un-

desirable outputs, are included. This approach will provide a more accurate and holistic

view of regional efficiency, aligning productivity assessments with environmental sus-

tainability goals.

4 Methods

Data Envelopment Analysis (DEA) is a non-parametric method used to evaluate the rel-

ative efficiencies and inefficiencies of a group of Decision-Making Units (DMUs). This

technique establishes a production frontier that represents the best practices. DMUs

that align with this frontier are considered efficient, while those positioned below the

frontier are classified as inefficient. To evaluate the performance of DMUs below the

best practices frontier, their efficiency values are compared with those positioned on

the frontier.

There are two approaches for constructing the frontier in data envelopment anal-

ysis: constant returns to scale (CRS) and variable returns to scale (VRS). CRS as-

sumes that any linear combination of observed Decision Making Units (DMUs) is fea-

sible, implying that proportionally scaling inputs and outputs of efficient DMUs could

create even more efficient units. In contrast, VRS acknowledges heterogeneity within

the data by considering only convex combinations of the observed DMUs as feasible.

This approach ensures that efficient units cannot be surpassed simply by scaling up

or down others. When dealing with a sample containing heterogeneous units over a

long period, VRS is generally more appropriate. This is because the assumption of

constant returns to scale might not hold over extended periods, where technological

advancements or resource limitations can impact efficiency. VRS provides a more re-

alistic assessment of efficiency under these circumstances by allowing for potential
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variations in scale economies.

DEA models can be categorized into two orientation types. On the one hand, we

have input-oriented, which seeks to minimize input usage while maintaining the same

output. On the other hand, we have output-oriented, which aims to maximize output

yield while keeping input levels constant. For these two orientations we also have two

measurement types. Firstly, the radial approach, which seeks a proportional way to

optimize any orientation mentioned above. Secondly, the non-radial approach, which

combines both orientations, with the objective of enhancing outputs while concurrently

minimizing input consumption (Zhou et al., 2012).

The traditional DEA models mainly focus on desirable output or input, but in the

actual production process, during the conversion of input to output undesirable byprod-

ucts may appear. The assumption is that an observed unit aligns with the production

frontier when it can increase the production of certain desirable outputs (goods) without

compromising the production of others, while also avoiding an increase in undesirable

outputs (bads) or an increase in inputs. Similarly, if a unit can maintain the same

outputs while using fewer inputs, it also indicates that it is operating efficiently and is

aligned with the frontier. (Charnes et al., 1981; Seiford and Zhu, 2002).

When it comes to dealing with both desirable and undesirable outputs, within the

DEA models, the Directional Distance Function (DDF) model is the optimal one to

facilitate the simultaneous increase of desirable and reduction of undesirable outputs.

Furthermore, the non-radial DDF method permits the non-proportional adjustment of

input and output weights (Wang et al., 2013). Lastly, for our study, since we evaluate all

the states of Mexico over a 20-year period, we cannot assume that the sample is quite

homogeneous and all states operate under similar conditions during each period, so it

is more appropriate to assume variable returns to scale and with this obtain a convex

combination.

Following Zhou et al. (2012) and Zhang et al. (2013), to set a DEA model, let us

assume that there are i = 1, 2, ..., K DMUs (in our case DMUs are states) and for each

DMU there is a production input vector x ∈ RN
+ , to jointly produce desirable outputs

y ∈ RM
+ and undesirable outputs c ∈ RJ

+. We use these vectors to create the multi-

output production technology, namely T , as defined in equation 1.

T = {(x, y, c) : x can produce y and c} ∈ RN
+ (1)

The production frontier is formed by the units that demonstrate the best practices

using production factors efficiently. Following Zhang et al. (2013), the non-radial DDF
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is defined as in equation 2.

−→
D(x, y, c; g) = sup[ω′β : {(x, y, c) + g × diag(β)} ∈ T ] (2)

where ω = (ωx
n, ω

y
m, ω

c
j)

′ denotes a non-negative normalized weight vector,

g = (−gx, gy,−gc) represents a directional vector, and β = (βx
n, β

y
m, β

c
j ) ∈

RN
+ ×RM

+ ×RJ
+ is a vector of scaling factors with respect to inputs (x), desirable outputs

(y), and undesirable outputs (c), respectively, that allows the set of inputs and the set

of outputs to adjust non-proportionally as in Wang et al. (2013).

In technical terms, the model assumes that for the production technology, inputs

and desirable outputs are strongly disposable, while undesirable output is weakly dis-

posable, which means that a reduction of undesirable output may not always be possi-

ble without incurring in certain costs (Hua Z., 2007). This DEA model is equivalent to

solve the linear programming problem for
−→
D(x, y, c; g) and mathematically can written

as equation (3) .

−→
D(x, y, c; g) =max

β,λ
(ω′β)

s.t.

K∑
i=1

λixin ≤ xn − βx
ng

x
n, n = 1, ..., N

K∑
i=1

λiyim ≥ ym + βy
mg

y
m, m = 1, ...,M

K∑
i=1

λicij = cj − βc
jg

c
j , j = 1, ...J

K∑
i=1

λi = 1

λi ≥ 0 i = 1, ..., K

βx
n, β

y
m, β

c
j ≥ 0

(3)

The programming model in equation (3) provides the general form of non-radial

DDF with variable return to scale, whose objective function maximizes the efficiency,

this implies that when
−→
D(x, y, c; g) = 0 the evaluated point is already located at the

frontier of best practice and it is efficient in the g direction. For our case, we de-

note x = (K,L,E) as inputs (Capital, Labor, and Energy), y = Y as desirable out-

put and c = C as the undesirable output (Greenhouses gases emission). Assuming

both inputs and undesirable outputs decrease and desirable outputs increase, the non-
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negative normalized weight vector is ω = (ωK , ωL, ωE, ωY , ωC)
′ and the directional vec-

tor is (−gx, gy,−gc)=(-K,-L,-E,Y ,-C) following Yao et al. (2015). Thus, the left-hand

side of the three first constraints uses the observed information for all DMUs, while

the right-hand side allows the assessed DMU to adjust inputs and outputs along the

direction of g = (−K,−L,−E, Y,−C) in the proportion of β = (βK , βL, βE, βY , βC) as

Wang et al. (2013). In the case of the third constraint, the equal sign is due to weak

disposability of undesirable output. The fourth constraint is for the variable return to

scale, that is the frontier results in a convex set that allows that DMUs with different

productivity to be considered efficient. 2

Following the example proposed by Zhou et al. (2012) and Wang et al. (2022),

we illustrate the non-radial directional distance function defined in equation (3) using

Figure 2 that depicts the amount of desirable and undesirable outputs by unit of energy

consumed. Points A, B, C and D are DMUs that form the frontier of best production

practices, while point E represents an inefficient DMU below the frontier that could

improve by moving along the frontier FBG, that is reducing C/E, increasing Y/E, or a

combination of both. When using a non-radial DDF model, if vector g is assigned to

these directions (called “directional vector”), E would move to the optimal point E’ since

is the best combination of reducing C/E, increasing Y/E, in a non-proportional way,

which is determined by βC and βY . This is the main contrast between radial and non-

radial distance function, where in radial measure our reference point would be fixed in

F or G, which implies that the non-radial measure is more flexible.

After solving the non-radial DDF problem in equation (3), we can use the resulting

scaling factors and weight vector to calculate the energy and environmental potentials

of each state in the country, as proposed by Zhou et al. (2012).

Following Zhou et al. (2012) and assuming β∗
E, β∗

Y , and β∗
C as the optimal scaling

factors for energy, output, and GHG emissions (undesirable output), respectively to

equation (3), four types of indices are proposed for energy efficiency and GHG emis-

sions.

Energy Potential Savings (EPS) represent the amount of energy that can be re-

duced while maintaining the same production level. In other words, EPS indicates that

the Decision Making Unit (DMU) is using more energy than necessary to produce the

same amount of product. Therefore, EPS quantifies the reduction of this unnecessary
2In traditional DEA models, equation (3) has always a solution, but since optimal solutions for λ∗

i are
multiple, then the solution cannot be unique. In addition, in the DDF model, the existence of multiple
solutions for the lineal programming model in equation (3) will depend on the values assigned to ω. An
example of this can be seen in the special cases provided by Zhou et al. (2012).
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Figure 2: Graphical example of non-radial directional distance function.

Notes: Points A, B, C and D are DMUs that form the frontier of best production practices, while point E
represents an inefficient DMU below the frontier that could improve by moving along the frontier FBG,
that is reducing C/E, increasing Y/E, or a combination of both. When using a non-radial DDF model,
the directional vector g causes E to move to the optimal point E’ since is the best combination of reducing
C/E, increasing Y/E, in a non-proportional way, which is determined by βC and βY .

energy consumption. Formally, it is defined as in equation (4).

EPS = ωEβ
∗
EE (4)

Energy Efficiency Performance (EEP), as defined in equation (5), quantifies the

potential energy consumption savings per additional unit of output. Zhou et al. (2012)

define it as the ratio of actual energy efficiency (Y/E) to potential energy efficiency.

EEP =

(
Y
E

)(
Y+ωY β∗

Y Y

E−ωEβ∗
EE

) =
1− ωEβ

∗
E

1 + ωY β∗
Y

(5)

Similarly, the GHG Emissions Potential Savings (GEPS) represents the extent to

which pollution should be reduced without affecting production.

GEPS = ωCβ
∗
CC (6)
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Finally, we follow Zhou et al. (2012) to define the GHG Emissions Performance

(GEP) as the ratio of potential target emission intensity to actual emission intensity

(C/Y).

GEP =

(
C−ωCβ∗

CC

Y+ωY β∗
Y Y

)
(
C
Y

) =
1− ωCβ

∗
C

1 + ωY β∗
Y

(7)

Both EEP and GEP lie between zero and unity. Zhou et al. (2012) states that, a

larger GEP represents better reduction GHG emission performance. If GEP is equal

to unity, it means that the DMU has the best reduction in GHG emission performance

for the level of gross value added.

5 Data

This paper assesses the energy and environmental performance in the manufactur-

ing sector across all thirty-two states of Mexico for different years between 1998 and

2018 . The economic activity data was sourced from the 31-32-33 NAICS sectors of

economic censuses by INEGI (2020b)3. Notably, we omitted the 3241 and 3251 in-

dustry groups, encompassing the oil refining sector, given its substantial contribution

to greenhouse gas emissions and energy consumption in manufacturing (16% and 9%

in 2018, respectively, as indicated by CONUEE (2018)). While undergoing stringent

environmental regulations, this sector has experienced heightened energy utilization.

For this reason, we have excluded them from our analysis to avoid bias towards states

including these industry groups.

Input variables, including capital (K), labor (L), and electricity consumption (E),

alongside the desirable output (Y ), were derived from INEGI (2020b). The desirable

output (Y ), representing gross value added (million MXN 2018=100), is the value gen-

erated during production. It was then adjusted using the corresponding manufacturing

producer price index PPI (2013). Capital (K), measured in million MXN 2018=100, rep-

resents the total stock of fixed assets, encompassing movable and immovable property
3The National Institute of Statistics and Geography (INEGI from its acronym in Spanish) is responsible

for obtaining statistical information from different projects such as censuses, surveys, and administrative
records. For this case, use was made of the information generated with the Economic Censuses, which
allow knowing and statistically measuring the state of the Mexican economy in a given period. This
project is carried out every 5 years, taking data from the previous year. For example, the most recent
for this document were the Economic Censuses 2019 which had information from 2018. Therefore, the
years to consider in our analysis are: 1998, 2003, 2008, 2013 and 2018.
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or enhancements enhancing productivity and useful life. It was adjusted using the ap-

propriate producer capital formation price index. Labor (L), quantified in thousands

of hours worked, includes both regular hours and overtime, dedicated to productive

activities.

To ascertain the energy consumption input variable (E), we drew on electricity con-

sumption data from INEGI (2020b), supplemented with natural gas consumption con-

verted both to energy equivalent through a constant transformation to obtain the same

units.4 The data regarding natural gas usage was acquired from Secretaria de Energı́a

(2020).

As a proxy for the undesirable output (C), we utilized data on CO2e emissions at

the state level from SEMARNAT (2019), where each state reports emissions by activity

type across various periods. However, these state-level emissions differed from na-

tional emissions published by INECC (2018), likely due to methodological variations.

To reconcile these discrepancies, we employed a two-step approach, first, we calcu-

lated the proportion of each state’s emissions relative to the national total, and sec-

ond, we applied these weights to the national emissions data from the manufacturing

sector. This approach ensures consistency between our state-level and national-level

emissions data for the manufacturing sector.

Table 1 reports some descriptive statistics of the five variables for 1998 and 2018,

which allows to illustrate clearer the change over the time. 5 As we can observe,

all variables increased significantly during our sample period, highlighting how energy

consumption increased by 114%, while GHG emissions were only 28%.

4Petajoules (PJ) were used as the unit of measurement for equivalent energy. To provide context,
here are some conversion factors: 1 million kWh is equivalent to 0.0036 PJ and 1 million cubic feet is
equivalent to approximately 0.0011 PJ (or 1.084597 x 10−3 PJ).

5Descriptive statistics and results for all years can be found in the appendices A.1, A.2, and A.3.
Information at state level is available upon request.
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6 Results

6.1 Technical efficiency with and without undesirable output

Upon applying the non-radial DDF model with a variable return to scale to the man-

ufacturing sector of Mexico’s states, to obtain
−→
D(x, y, c; g) with the optimal values,

we solved equation (3) for five different years between 1998 and 2018, those are:

1998, 2003, 2018, 2013 and 2018. Subsequently, to simultaneously model energy

and environmental performance, we set the directional vector g = (−gx, gy,−gc) =

(−K,−L,−E, Y,−C) and changes in total technical efficiency are evaluated through a

comparison of two scenarios. The first scenario exclusively considered the desirable

output, denoted by the normalized weight vector ω = (ωx
n, ω

y
m, ω

c
j) = (ωK , ωL, ωE, ωY , 0) =

(1/9, 1/9, 1/9, 2/3, 0), with the directional vector for the undesirable output C set to

gC = 0. In contrast, the second scenario encompassed both desirable and undesir-

able outputs, utilizing ω = (1/9, 1/9, 1/9, 1/3, 1/3). 6. The technical efficiency indexes

(
−→
D ) obtained under both scenarios are illustrated in Figure 3. 7

Our results demonstrate that, in general, technical efficiency is consistently higher

or equal when focusing solely on the desired output rather than considering both out-

puts. Furthermore, instances where a state demonstrated inefficiency in the former

scenario (depicted by the blue line in Figure 3(b) falling within the inner portion with

values below 1.0) experienced an even further decline in efficiency under the latter

scenario (illustrated by the red line), with the exception of Yucatán (noted as “Yuc” in

Figure 3(b)).

Our analysis has uncovered a significant disparity in the number of efficient states

based on whether only the desirable output is taken into account. Specifically, in 1998,

we identified 23 states as efficient when focusing solely on the desirable output, a count

that reduced to 15 when both outputs were considered (refer to Figure 3(a)). Similarly,

for 2018, we observed 20 states exhibiting efficiency under the scenario of considering

only the desirable output, compared to 17 states when incorporating both outputs (refer

to Figure 3(b)).
6Following Zhang et al. (2013), we aim to improve economic efficiency by minimizing capital and

labor inputs while maximizing desirable output and minimizing undesirable output. This approach sug-
gests assigning equal weights to all inputs and outputs. However, since the inputs encompass three
variables (capital, labor, and energy), the weight for inputs is divided equally among them, resulting
in the vector ω = (1/9, 1/9, 1/9, 1/3, 1/3). Alternatively, we calculate results using a weight vector of
(0, 0, 1/3, 1/3, 1/3). This approach focuses solely on energy, desirable and undesirable outputs, isolat-
ing their impact without altering capital and labor inputs. This analysis is further explored in Section
6.3

7The technical efficiency indexes for the rest of the years are reported in Appendix A.2.
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(a) 1998 (b) 2018

Figure 3: Technical Efficiency with only desirable output (Y) and with both desirable
and undesirable outputs (Y & C)

Notes: 1) Blue line represents total technical efficiency when only the desirable output is taking into
account, while red line shows it when both desirable and undesirable outputs are taking into account. 2)
The outer circle marked with 1.0 represents the production frontier, inner circles mean to locate below
the frontier. 3) Average technical efficiencies in 1998 were 0.95 (Y ) and 0.81 (Y&C), while in 2018 were
0.90 (Y ) and 0.81 (Y&C). 4) Mann–Whitney–Wilcoxon test for 1998 shows a statistic z = 2.556 with
p value = 0.0106 and for 2018: z = 1.226 and p value = 0.22.

Nonetheless, we contend that the evaluation of technical efficiency should encom-

pass both desirable and undesirable outputs. This approach permits efficient strategies

to account for the potential detrimental effects stemming from environmental factors.

Recognizing the negative impact of emissions and energy consumption can help cre-

ate more comprehensive and effective initiatives to promote sustainability within the

manufacturing sector.

Moreover, a comparison of the average technical efficiency between 1998 and 2018

revealed an interesting trend. In 1998, the average technical efficiency was consis-

tently higher under both scenarios than in 2018. To substantiate this, we employed the

Mann–Whitney–Wilcoxon test to assess total technical efficiency,8 uncovering signifi-

cant differences at the 5% significance in 1998 but not in in 2018. This suggests that

for the later year, there was no significant difference between the efficiencies achieved

under these two scenarios.

Remarkably, our findings also unveiled that, although the number of inefficient

states decreased from 1998 to 2018, the overall efficiency of the manufacturing sector
8The Mann-Whitney U Test, also known as the Wilcoxon Rank-Sum Test, is a non-parametric test

used to compare differences between two independent groups under the null hypothesis that they come
from populations with the same distribution (Mann and Whitney, 1947; Wilcoxon, 1992).
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did not demonstrate improvement over this period. This intriguing outcome empha-

sizes that despite advancements in efficiency within some states, others experienced

notable declines in their efficiency levels. For instance, states like Michoacán and Chi-

apas saw substantial reductions in their efficiency scores. This dynamic suggests that

while certain regions have made progress, the overarching efficiency landscape in the

manufacturing sector of Mexico still requires substantial attention.

6.2 Explaining technical efficiency with undesirable output

In this section, our objective was to discern the factors intricately linked with the tech-

nical efficiency index derived from both desirable and undesirable outputs. To achieve

this, we construct a pseudo-panel utilizing the outcomes for obtained in Section 6.1,

constituting a framework encompassing 32 states (N = 32) across a five-year span

(specifically, T = 1998, 2003, 2008, 2013, 2018). Delving into the analysis, we exam-

ined an array of variables (as detailed in Table 2) that could potentially drive improve-

ments in energy and environmental efficiency.

These variables included educational attainment, sectoral specialization, invest-

ments, and a green tax for states that have already implemented it. 9 However, we

must acknowledge that other factors might lead to outcomes of uncertain significance.

For instance, variables such as whether states are natural gas producers and whether

they have air quality systems in place can have different implications. This uncertainty

arises from the fact that states lack ownership over local gas resources, and the en-

forcement of environmental regulations is relatively weak nationwide. To further ensure

comprehensive analysis, we also incorporated population density as a control variable.

Given the bounded nature of the dependent variable, which ranges between zero

and one, we opted for a fractional probit response model, which is well-suited for panel

data analysis. In line with the approach suggested by Papke and Wooldridge (2008),

we employed an exchangeable working correlation matrix. 10 We also followed Papke
9These taxes have been established by each state to target firms responsible for environmental

damage. As of 2018, only five states have set such taxes: Estado de México, Querétaro, Oaxaca,
Campeche, and Quintana Roo. For example, Estado de México introduced an environmental tax for the
emission of pollutants into the atmosphere in 2018. More information by state and tax category can be
found in the Mexican Environmental Taxes Guideline (https://explore.pwc.com/impuestosverdes2022).

10Papke and Wooldridge (2008) describe it as a situation where errors in data analysis tend to stay
similarly connected over time, regardless of other factors. This is called an ”exchangeable” pattern.
Normally, these errors (represented by uit) would change based on specific observations (i) and time
periods (t and s), especially when the data being analyzed isn’t a continuous, unrestricted variable.
However, these error connections might not actually depend on the specific observations considered.
Even if they did connect slightly, those connections would not change much based on the time period
examined. In simpler terms, Papke and Wooldridge (2008) proposes that these errors behave in a
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and Wooldridge (2008) methodology by using quasi-maximum likelihood estimation

(quasi-MLE), which incorporates the temporal averages of explanatory variables. This

adjustment helps to manage the correlation between individual fixed effects and the

explanatory factors. By doing so, we can avoid the exclusion of unobservable effects

that remained constant over time. Let zit be the set of independent variables, equation

(8) displays the model we aim to estimate.

Pr(
−→
D it|zi1, zi2, ..., ziT ) = Φ(γt + zitδ + z̄iψ) (8)

where
−→
D it is the optimal technical efficient coefficient for state i in year t, γt is for a

different intercept in each year, and z̄i is the average of zit over time.

To obtain proxies for the variables mentioned above, we use for education, the av-

erage years of education of the employed population in the Educational characteristics

of the population section from INEGI (2021a). Air quality monitoring systems 11 are

a tool that some entities have that allows knowing the quality of the air with respect

to certain pollutants, obtained by INECC (2018). The availability of a green tax was

also considered, as obtained from each state’s reports. Sectoral specialization index

was calculated by determining the absolute difference between the three most impor-

tant sectors (manufacturing, services, and trade) of each state in relation to the total

of these sectors.12 Natural gas production was also taken into account, as reported in

Secretaria de Energı́a (2020). Population density was obtained from INEGI (2020a).

Finally, we computed total public investments using information of “Public Domain As-

sets”, “Productive Projects”, and “Promotion Actions” sections from INEGI (2021b),

along with information from the Economic Census published by INEGI (2020b) 13.

Table 2 presents the descriptive statistics. It’s worth noting that for several variables,

a value of 0 is observed in certain years. Consequently, we opted to work with these

variables in their original levels rather than employing logarithmic transformations.

predictable way, regardless of the details of each data point or the specific time frame analyzed. This
assumption aligns with the common idea in statistics that errors in a certain type of model (random
effects) are independent and have a constant correlation structure.

11The quality of the air is monitored for specific pollutants using a series of computer programs in each
station to gather reliable information. There are currently 34 air quality monitoring systems set up across
the country, strategically placed in cities and metropolitan areas.

12This study adapts the specialization index originally proposed by Krugman (1991) to analyze re-
gional economies within Mexico. The index measures the degree of industry specialization in a par-
ticular region. It essentially calculates the percentage of jobs in that region that would need to be
shifted to different industries in order for the region’s industrial makeup to mirror the national aver-
age. It is calculated in this case as SIit =

∑3
j=1 |bjit − b̄it| where bjit = laborjit/

∑3
j=1 laborjit,

b̄it =
∑N

i=1 laborjit/
∑N

i=1

∑3
j=1 laborjit, and i is for region and j for the sector: manufacturing, ser-

vices, and trade.
13This calculation includes investments from the federal, state, and municipal governments
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We employed a fractional probit model with robust standard errors to identify factors

correlated with the technical efficiency index derived from both desirable and undesir-

able outputs. The outcomes of our estimation are presented in the ”fractional probit

coefficient” column of Table 3, along with the corresponding average partial effect in

the final column.

Table 3: Effects on Technical Efficiency of the Manufacturing Sector

Linear fixed effects Fractional Probit
Coefficient Coefficient Average Partial Effect

Average years of education -0.077 -0.044 -0.009
of the employed population (-0.521) (-0.560) (-0.554)

1 if state accounts with an air -0.029 -0.092 -0.018
quality monitoring system (-0.540) (-0.550) (-0.558)

1 if state has a green tax 0.065 0.642∗∗∗∗ 0.123∗∗∗

(0.748) (3.304) (3.067)

Sectoral specialization index 0.430 3.564∗∗ 0.684∗∗

(0.986) (2.128) (1.992)

Natural gas production 1.304∗∗∗ 2.901∗∗∗ 0.557∗∗∗

(2.982) (3.032) (2.886)

Population density 0.000 0.003∗∗∗∗ 0.001∗∗∗∗

(0.507) (3.420) (4.240)

Total investments per 0.137 0.762∗∗ 0.146∗∗

manufacturing unit (1.078) (2.200) (2.036)

Constant -17.754 -4.313∗∗∗∗

(-0.527) (-3.712)

Observations 160 160
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001

To verify the robustness of our findings, we also estimated a linear model with fixed

effects on the panel data. However, this approach has limitations, as it does not guar-

antee that the predicted values will fall within the necessary range of zero to one, which

is necessary for our analysis. Despite this limitation, the results from the linear model

and the fractional probit model showed consistency in terms of the direction (positive or

negative) and magnitude of the coefficients. However, some coefficients that were sta-

tistically significant in the fractional probit model were not significant in the fixed effects

model.
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Given the limitations of the fixed effects model and the greater interpretability of

the average partial effect from the fractional probit model’s results within the zero-to-

one range, we will focus on the estimates obtained from the fractional probit model

for further analysis. The study’s outcomes offer compelling insights into the drivers of

technical efficiency within Mexico’s manufacturing sector. Our analysis not only con-

firms the relevance of certain variables but also reveals intriguing nuances that are

consistent with existing economic literature.

The results underscore the considerable influence of sectoral specialization on en-

hancing technical efficiency. This aligns with established economic theories, which

assert that concentrating efforts in specific sectors can yield economies of scale and

optimized resource allocation (Widodo et al., 2015; Alvarez et al., 2017). Furthermore,

the substantial positive impact of combined public and private investments on techni-

cal efficiency resonates with empirical evidence showing that investments in modern

technologies and infrastructure can foster productivity gains (Auci et al., 2021).

The presence of a green tax emerges as a pivotal factor that positively shapes

technical efficiency. This finding aligns with the broader environmental economics lit-

erature, which underscores that incorporating environmental considerations into busi-

ness practices can propel efficiency improvements (Böhmelt et al., 2018). However,

the education coefficient’s lack of significance challenges the conventional notion that

a highly educated workforce inherently translates into heightened technical efficiency

(Mohan, 2020).

The notable influence of local natural gas production on technical efficiency is par-

ticularly noteworthy (Tab, Tamps, Ver, NL, Chis, Coah, Pue, Camp, SLP). Having a nat-

ural gas well or a large storage point can significantly enhance energy efficiency and

environmental performance for several reasons. First, these facilities allow for a sta-

ble and reliable supply of natural gas, which is a cleaner-burning fossil fuel compared

to coal or oil. This results in lower greenhouse gas emissions and pollutants when

used for electricity generation or heating. Second, large storage facilities enable the

optimization of natural gas distribution, reducing the need for frequent transportation

and associated emissions. They also help in balancing supply and demand, minimiz-

ing energy wastage and improving overall system efficiency. Additionally, the ability to

store natural gas ensures that there is a backup supply during peak demand periods or

supply disruptions, further enhancing energy security and reducing reliance on more

polluting energy sources.

Conversely, the insignificance of the coefficient related to air quality monitoring sys-
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tems underscores the challenges Mexico faces in enforcing environmental regulations,

emphasizing the need for more robust enforcement mechanisms. In summary, the

findings of this section not only affirm the role of established factors but also shed light

on new perspectives on technical efficiency determinants in the manufacturing sector

when considering the undesirable output.

6.3 Energy and Environmental Performance

Recognizing the significance of incorporating both desirable and undesirable outputs

into our analysis, this section focuses on evaluating the energy and environmental po-

tential while considering both output categories. However, we retained capital and labor

as constant variables (i.e., ω = (0, 0, 1/3, 1/3, 1/3)). The outcomes pertaining to the en-

ergy efficiency performance (EEP, vertical axis) and the GHG emission performance

(GEP, horizontal axis) for the years 1998 and 2018 are displayed in Figure 4.

Our findings revealed a positive correlation between energy and environmental po-

tential among inefficient states, comprising 17 in 1998 and 15 in 2018. This suggests

that a higher energy efficiency potential corresponds to a greater ability to conserve en-

ergy, thereby resulting in reduced pollution and enhanced environmental performance.

In 1998, excluding the points on the frontier (i.e., those equal to 1), performance

ranged from the pair (56%, 57%), representing the energy and environmental perfor-

mance of Michoacán, to the pair (92%, 89%), corresponding to the energy performance

of Sinaloa and the environmental performance of Chihuahua, respectively (refer to Fig-

ure 4(a)). By 2018, we observed an increased dispersion, with energy efficiency and

environmental performance ranging from a minimum of 27% and 23% in Chiapas to a

maximum of 97% and 92% in Nayarit and Nuevo León, respectively (see Figure 4(b)).

Notably, the black quadrant in the upper-right corner of the figure, located at co-

ordinates (1,1), includes states on the production frontier. In 1998, there were 15

states in this quadrant, and by 2018, the number had increased to 17. These states

had adopted optimal practices in terms of energy efficiency and environmental per-

formance, achieving a balance between reducing energy consumption and pollution

without compromising production. The states that moved to the frontier between 1998

and 2018 were mainly located in the Northern region (represented by yellow markers).

In contrast, states that remained in the inefficient region or deviated from the frontier

were mostly situated in the central-northern (green markers), southern (blue markers),

and central (red markers) regions of the country.
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Regarding the average performance, there were no substantial changes in energy

and environmental performance between 1998 and 2018. The Energy Efficiency Per-

formance (EEP) altered slightly from 0.9 to 0.88, and the Greenhouse Gas Emission

Performance (GEP) remained steady at 0.87 for both years. However, Figures 4 and

5 revealed considerable variability (see Appendix A.3 for more information about EEP

and GEP for the rest of the years).

Among the 15 states positioned below the frontier, six states (Nuevo León, Tamauli-

pas, Jalisco, Oaxaca, Puebla, and Veracruz) demonstrated enhanced production prac-

tices, edging closer to the frontier. Conversely, the remaining nine states moved further

away from the frontier, indicating declining efficiency. Figure 5 illustrates the map detail-

ing the percentage change in performance measures for each state between 1998 and

2018. Concerning EEP (Figure 5(a)), Coahuila emerged as the most improved state

during this period, reaching the production frontier by 2018. Likewise, the GEP map

(Figure 5(b)) highlighted noteworthy enhancements in five states: Sonora, Sinaloa,

San Luis Potosı́, Chihuahua, and Guerrero. Notably, Chiapas was the sole state that

experienced a substantial decline in both EEP and GEP (Figure 5).

Utilizing a simple average for the analysis would result in an unfair representation.

Instead, it is imperative to take into account the productive orientation of each state

situated below the frontier. In Figure 4, the size of each marker corresponds to the

sector’s contribution to the national value added in the manufacturing sector. Given the

exclusion of the oil refining industry from the analysis, this simplification aids in eval-

uating efficiency, considering the fluctuations in environmental regulations (CONUEE,

2018).

Nevertheless, it’s important to note that according to CONUEE (2018) other in-

dustries such as iron and steel, cement, and paper also play a significant role in

these states. These sectors exhibit substantial potential for improving their energy

efficiency,can be effectively intervened upon, and have access to advanced technolo-

gies that can have positive environmental impacts. As such, evaluating efficiency in

these states requires a detailed understanding of the specific characteristics of each

sector and the broader regulatory environment (CONUEE, 2018).

Furthermore, the insights from Figure 4 underscore another dimension of this anal-

ysis. For instance, while states like Chiapas and Michoacán exhibit a significant po-

tential for enhancing energy efficiency, their limited share in the national manufacturing

value-added would lead to comparatively minor contributions to the overall national en-

ergy savings. Conversely, states such as Tamaulipas and Nuevo León, with higher
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proportions in the manufacturing value-added, hold the potential to make substantial

contributions to national savings due to their greater influence.

Turning to the energy aspect, Table 4 presents a comprehensive view of the Energy

Potential Savings (EPS) within the national manufacturing sector for the year 2018.14

The EPS, amounting to 20.3% of total energy consumption, equivalent to 156 PJ of en-

ergy, highlights the considerable impact that energy efficiency enhancement measures

could have. Notably, the table underscores the pivotal role of certain states in these

potential energy savings. Among them, Nuevo León emerges as a significant contribu-

tor, accounting for 40.6% of the potential savings, closely followed by Veracruz (20.2%)

and Tamaulipas (9.2%). This reinforces the idea that targeted improvements in energy

efficiency could substantially drive national energy conservation goals, with the con-

tribution varying based on a state’s manufacturing prowess and energy consumption

patterns.

Table 4: Energy Potential Savings in 2018

State State EPS EPS share
name (%) (%)

Nuevo León 68.5 40.6
Veracruz 76.2 20.2
Tamaulipas 61.6 9.2
Michoacán 51.9 6.8
Querétaro 45.2 5.5
Rest of states* 12.5 17.7

Total** 20.3 100.0
* In the second and third columns, EPS refers
to the rest of states’ average. ** In the second
column, EPS is for the country average, while
in the third column, it represents the total sum.

In terms of environmental considerations, the insights gleaned from the GHG Emis-

sion Potential Abatement for the year 2018 underscore that enhancements in the man-

ufacturing sector’s environmental efficiency could potentially yield substantial reduc-

tions in GHG emissions. Nationally, a potential reduction of 24.3%, equivalent to

around 6.4 Mt CO2e, could be achieved by implementing measures to improve the

sector’s environmental performance. These details are outlined in Table 5, where the

results emphasize that the influential role of specific states in shaping the country’s
14EPS and GEPS are reported in Appendix A.3 for the entire sample. From 1998 to 2018, there have

been fluctuations in both EPS and GEPS, with values both increasing and decreasing over the years.
However, no clear trend can be identified throughout this period.
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environmental savings. Hidalgo (17.6%), Veracruz (17.2%), and Michoacán (13%) are

identified as key contributors to the envisioned national environmental savings, due to

their substantial manufacturing value-added contributions.

It’s worth noting that the synergy between energy and environmental efficiency is

vital. The virtuous cycle of improvements in one area reinforcing the other is evident.

For instance, advancements in energy efficiency translate into substantial energy sav-

ings, resulting in reduced pollution levels and consequently, amplified environmental

efficiency. This holistic approach underscores the interconnectedness of energy and

environmental dynamics within the manufacturing sector’s performance landscape.

Table 5: GHG Emission Potential Savings in 2018

State State GEPS GEPS share
name (%) (%)

Hidalgo 64.3 17.6
Veracruz 52.4 17.2
Michoacán 36.6 13.0
Jalisco 35.1 11.3
Nuevo León 23.1 9.5
Rest of states* 20.8 31.4

Total* 24.3 100.0
* In the second and third columns, GEPS refers
to the average. ** In the second column, GEPS
is for the country average, while in the third col-
umn, it represents the total.
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(a) 1998

(b) 2018

Figure 4: Energy Efficiency Performance vs. GHG Emission Performance

Notes: 1) The black quadrant at (1,1) in the lower left corner illustrates the states on the production
frontier, which were 15 (BC, BCS, Ags, Col, Zac, Nay, CDMX, Gto, Mex, Mor, Tlax, Qro, QRoo, Camp,
Chis) in 1998 and 17 (Coah, Chih, Son, BC, BCS, Ags, Sin, Col, SLP, CDMX, Gto, Mex, Mor, Tlax, QRoo,
Camp, Gro) in 2018. 2) States in the Northern region use yellow markers, in the Southern region blue
markers, in the central-Northern region green markers, and in the central region red markers. 3) The
size of each point represents the participation of the state’s sector in the total domestic value added (VA).
4) Average EEP and GEP were 0.90 and 0.87, respectively, in 1998, and 0.88 and 0.87, respectively, in
2018.
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(a) Energy Efficiency (EEP)

(b) GHG Emission (GEP)

Figure 5: % Change Performances 1998-2018

Notes: States in white remain in the frontier in both periods. States colored in green increased perfor-
mance from 1998 to 2018, while in red means a reduction during the same period.
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7 Discussion and concluding remarks

Mexico’s ambitious commitment to curbing GHG emissions by an impressive 22% be-

fore 2030, equating to the substantial mitigation of over 211 million tons of CO2e,

demonstrates a proactive approach towards combating climate change. Interestingly,

an overlooked aspect of this endeavor is the potential embedded within the individual

states of Mexico to significantly reduce emissions without compromising their manufac-

turing prowess, an aspect that warrants closer examination and strategic consideration.

To grasp this potential, assume each state reaches a position on the production

frontier -– the hypothetical boundary where a state’s production processes become as

efficient as possible in terms of both energy consumption and environmental impact. If

such an alignment were achieved, it could, in itself, contribute around three percentage

points towards the nation’s overarching target, corresponding to a substantial 6.4 mil-

lion tons of the total 211 million tons. This analysis highlights that each state’s position

on the production frontier holds a latent power to create sizeable emissions reductions,

irrespective of its current status.

However, this potential isn’t uniform across all regions. The northern states exhibit

a promising capacity for energy savings, reflecting the industrial heft and innovation-

driven nature of these regions. Meanwhile, the central-northern and southern states

possess untapped potential to focus their efforts on reducing pollution, aligning with

their unique economic landscapes. These observations underscore the need for tai-

lored strategies that address each region’s specific strengths and opportunities.

Furthermore, envisioning a nationwide shift towards more efficient production prac-

tices, similar to those already demonstrated in certain regions, holds the promise of

generating even more substantial energy savings and GHG reductions. The ripple ef-

fect of such a transformation, cascading across the nation’s manufacturing landscape,

could lead to a collective impact far greater than the sum of its parts.

However, it’s important to acknowledge that these transformations don’t come with-

out their challenges. As energy prices continue to soar, the anticipated energy savings

could potentially exert positive pressure on production costs. However, this hinges on

the delicate balance between the savings realized and the necessary investments re-

quired to usher in these transformative changes. The feasibility of these investments

would need to be carefully evaluated against the backdrop of broader economic con-

siderations.

In conclusion, Mexico’s journey towards a greener future entails multifaceted im-
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plications. The potential for emissions reduction within each state offers a compelling

pathway towards meeting national goals. By leveraging regional strengths, fostering

innovation, and adopting efficiency-enhancing practices, Mexico could indeed turn the

tide on emissions while simultaneously redefining its manufacturing landscape. This

dual benefit – a substantial environmental contribution and a potential economic ad-

vantage – underscores the critical intersection between sustainable practices and a

resilient, forward-looking economy.
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A Appendix

A.1 Descriptive Statistics

Variable Unit 1998 2003
mean sd mean sd

Value added (Y) [1× 106 MXN (2018)] 51,943 63,989 61,965 68,1132
CO2e emissions (C) [1× 103 ton CO2e] 2,872 2,503 2,659 2,125
Energy (E) [1× 1015 Joules] 19.8 26.9 19.4 28.7
Capital (K) [1× 106 MXN (2018)] 71,132 81,548 75,564 81,380
Labor (L) [1× 103 hours worked)] 302,823 316,557 306,172 304,121

Observations 32 32 32 32

Variable Unit 2008 2013
mean sd mean sd

Value added (Y) [1× 106 MXN (2018)] 68,782 76,252 65,760 71,398
CO2e emissions (C) [1× 103 ton CO2e] 3,320 2,615 3,546 2,831
Energy (E) [1× 1015 Joules] 21.9 32.0 25.6 36.0
Capital (K) [1× 106 MXN (2018)] 70,495 68,650 78,128 82,402
Labor (L) [1× 103 hours worked)] 324,316 310,070 359,963 337,214

Observations 32 32 32 32

Variable Unit 2018
mean sd

Value added (Y) [1× 106 MXN (2018)] 96,554 105,195
CO2e emissions (C) [1× 103 ton CO2e] 3,676 3,395
Energy (E) [1× 1015 Joules] 42.6 55.6
Capital (K) [1× 106 MXN (2018)] 86,010 89,863
Labor (L) [1× 103 hours worked)] 469,327 433,529

Observations 32 32
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A.2 Technical Efficiency

Region State 1998 2003 2008 2013 2018
Y Y & C Y Y & C Y Y & C Y Y & C Y Y & C

Central CDMX 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Gto 1.00 1.00 0.92 0.75 0.84 0.70 0.84 0.78 1.00 1.00
Central Hgo 0.68 0.48 0.87 0.45 1.00 0.56 1.00 0.07 1.00 0.40
Central Mor 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.51 1.00 1.00
Central Mex 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Pue 0.63 0.72 0.88 0.81 0.79 0.69 1.00 1.00 0.92 0.91
Central Qro 1.00 1.00 0.77 0.56 1.00 1.00 0.66 0.64 0.91 0.89
Central Tlax 1.00 1.00 0.65 0.69 1.00 1.00 1.00 1.00 1.00 1.00

North-Central Ags 1.00 1.00 0.67 0.53 0.96 0.95 0.37 0.47 1.00 1.00
North-Central BCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
North-Central Col 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 1.00
North-Central Dgo 0.87 0.72 0.00 0.34 0.91 0.63 0.34 0.33 0.84 0.69
North-Central Jal 0.96 0.78 1.00 0.71 1.00 0.69 1.00 1.00 0.94 0.85
North-Central Mich 1.00 0.37 1.00 0.06 1.00 0.45 1.00 0.00 1.00 0.04
North-Central Nay 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.79 0.60
North-Central SLP 1.00 0.65 1.00 0.47 1.00 0.65 0.82 0.61 1.00 1.00
North-Central Sin 1.00 0.68 0.85 0.57 1.00 0.67 0.85 0.24 1.00 1.00
North-Central Zac 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.48 1.00 0.76

Northern BC 1.00 1.00 0.92 0.89 1.00 1.00 0.87 0.86 1.00 1.00
Northern Chih 0.84 0.81 1.00 1.00 1.00 0.70 0.78 0.77 1.00 1.00
Northern Coah 1.00 0.70 0.87 0.68 1.00 1.00 1.00 1.00 1.00 1.00
Northern NL 0.81 0.70 1.00 0.69 1.00 0.87 1.00 0.81 0.91 0.83
Northern Son 0.99 0.81 0.77 0.56 1.00 0.74 1.00 1.00 1.00 1.00
Northern Tamps 1.00 0.72 0.69 0.65 1.00 1.00 0.48 0.57 0.83 0.75
Southern Camp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Chis 1.00 1.00 0.84 0.77 0.83 0.64 1.00 1.00 0.00 0.00
Southern Gro 1.00 0.60 0.81 0.54 0.88 0.48 1.00 1.00 1.00 1.00
Southern Oax 1.00 0.54 1.00 0.31 1.00 0.49 1.00 0.00 0.78 0.58
Southern QRoo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Tab 0.82 0.70 1.00 1.00 0.80 0.78 0.77 0.81 0.72 0.60
Southern Ver 1.00 0.34 0.89 0.44 1.00 0.69 1.00 0.65 0.63 0.41
Southern Yuc 0.77 0.67 0.52 0.54 0.61 0.56 0.41 0.38 0.49 0.59

National 0.95 0.81 0.87 0.72 0.96 0.81 0.87 0.69 0.90 0.81
Note: 1) The showed values represent total technical efficiency. Y variable describes total technical efficiency
when only the desirable output is taking into account. Y&C variable shows it when both desirable and undesirable
outputs are taking into account. 2) The value 1.00 represents the production frontier. Hence, the closer to this
value more efficient could be. 3) National variable is the average technical efficiencies in each year.
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A.3 Energy Efficiency and GHG Emission Performance

Region State 1998 2003 2008 2013 2018
EEP GEP EEP GEP EEP GEP EEP GEP EEP GEP

Central CDMX 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Gto 1.00 1.00 0.92 0.79 0.81 0.79 0.84 0.86 1.00 1.00
Central Mex 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Mor 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.67 1.00 1.00
Central Tlax 1.00 1.00 0.70 0.84 1.00 1.00 1.00 1.00 1.00 1.00
Central Pue 0.83 0.86 0.92 0.89 0.76 0.82 1.00 1.00 0.85 0.96
Central Qro 1.00 1.00 0.74 0.69 1.00 1.00 0.71 0.78 0.85 0.95
Central Hgo 0.63 0.64 0.70 0.60 0.75 0.69 0.48 0.49 0.61 0.60

North-Central BCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
North-Central Ags 1.00 1.00 0.91 0.68 0.98 1.00 0.67 0.71 1.00 1.00
North-Central Sin 0.92 0.74 0.92 0.75 1.00 0.74 0.62 0.50 1.00 1.00
North-Central Col 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.59 1.00 1.00
North-Central SLP 0.81 0.74 0.74 0.63 0.80 0.77 0.75 0.73 1.00 1.00
North-Central Zac 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.64 1.00 0.78
North-Central Nay 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.62 0.97 0.68
North-Central Jal 0.90 0.84 0.90 0.78 0.83 0.76 1.00 1.00 0.94 0.88
North-Central Dur 0.91 0.83 0.74 0.55 0.82 0.71 0.56 0.57 0.79 0.78
North-Central Mich 0.56 0.57 0.46 0.46 0.64 0.64 0.41 0.44 0.47 0.50

Northern Coah 0.75 0.79 0.80 0.79 1.00 1.00 1.00 1.00 1.00 1.00
Northern Chih 0.87 0.89 1.00 1.00 0.84 0.79 0.79 0.90 1.00 1.00
Northern Son 1.00 0.82 0.87 0.70 0.91 0.78 1.00 1.00 1.00 1.00
Northern BC 1.00 1.00 0.98 0.94 1.00 1.00 0.80 0.99 1.00 1.00
Northern Tamps 0.74 0.81 0.75 0.78 1.00 1.00 0.69 0.73 0.79 0.86
Northern NL 0.71 0.82 0.75 0.82 0.79 0.95 0.79 0.89 0.77 0.92
Southern Qroo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Camp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Gro 0.90 0.70 0.93 0.67 0.84 0.63 1.00 1.00 1.00 1.00
Southern Oax 0.81 0.66 0.71 0.55 0.83 0.61 0.48 0.40 0.98 0.72
Southern Yuc 0.85 0.85 0.91 0.65 0.85 0.66 0.60 0.60 0.72 0.72
Southern Tab 0.89 0.76 1.00 1.00 0.83 0.91 0.75 0.96 0.70 0.73
Southern Ver 0.58 0.59 0.67 0.64 0.78 0.80 0.71 0.78 0.58 0.64
Southern Chis 1.00 1.00 1.00 0.88 0.97 0.74 1.00 1.00 0.27 0.23

Note: 1) The showed values represent Energy Efficiency (EEP) and GHG Emission Performance (GEP). 2) We
can see Mexico City, Mexico, Baja California Sur, Quintana Roo and Campeche maintain through five periods the
optimal energy efficiency and GHG emissions performance
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